perm filename TAKEUC.PRF[F78,JMC] blob
sn#390441 filedate 1978-10-21 generic text, type T, neo UTF8
*****ASSUME x≤y;
1 x≤y (1)
*****REWRITE tak1(x,y,z)=tak0(x,y,z) BY LOGICTREE∪{ TAK0,TAK1,1};
2 tak1(x,y,z)=tak0(x,y,z) (1)
*****⊃I ↑↑⊃↑;
3 x≤y⊃tak1(x,y,z)=tak0(x,y,z)
*****ASSUME ¬(x≤y);
4 ¬(x≤y) (4)
*****∀E LESS2 x,y;
5 (x<y∧(¬(x=y)∧¬(y<x)))∨((¬(x<y)∧(x=y∧¬(y<x)))∨(¬(x<y)∧(¬(x=y)∧y<x)))
*****∀E LESS4 x,y;
6 x≤y≡(x<y∨x=y)
*****TAUT y<x 4:6;
7 y<x (4)
*****ASSUME y≤z;
8 y≤z (8)
*****∀E LESS1 y;
9 pred y<y
*****∀E LESS3 pred y,y,z;
10 ((pred y<y∧y<z)⊃pred y<z)∧(((pred y≤y∧y<z)⊃pred y<z)∧(((pred y<y∧y≤z)⊃pred y<z)∧((pred y≤y∧y≤z)⊃pred y≤z)))
*****∀E LESS4 pred y,y;
11 pred y≤y≡(pred y<y∨pred y=y)
*****TAUT pred y≤z 8:11;
12 pred y≤z (8)
*****REWRITE tak1(x,y,z)=tak0(x,y,z) BY LOGICTREE∪{ TAK0,TAK1,4,7:8,12};
13 tak1(x,y,z)=tak0(x,y,z)≡IF IF pred x≤y THEN y ELSE z≤z THEN z ELSE IF z≤IF pred z≤x THEN x ELSE pred z THEN I%
F pred z≤x THEN x ELSE pred z ELSE IF pred x≤y THEN y ELSE z=z (4 8)
*****ASSUME pred x≤y;
14 pred x≤y (14)
*****REWRITE ↑↑ BY LOGICTREE∪{ 8,14};
15 tak1(x,y,z)=tak0(x,y,z) (4 8 14)
*****⊃I ↑↑⊃↑;
16 pred x≤y⊃tak1(x,y,z)=tak0(x,y,z) (4 8)
*****ASSUME ¬(pred x≤y);
17 ¬(pred x≤y) (17)
*****REWRITE 13 BY LOGICTREE∪{ LESS4,8,17};
18 tak1(x,y,z)=tak0(x,y,z) (4 8 17)
*****⊃I ↑↑⊃↑;
19 ¬(pred x≤y)⊃tak1(x,y,z)=tak0(x,y,z) (4 8)
*****TAUT tak1(x,y,z)=tak0(x,y,z) 16,19;
20 tak1(x,y,z)=tak0(x,y,z) (4 8)
*****ASSUME ¬(y≤z);
21 ¬(y≤z) (21)
*****∀E LESS2 y,z;
22 (y<z∧(¬(y=z)∧¬(z<y)))∨((¬(y<z)∧(y=z∧¬(z<y)))∨(¬(y<z)∧(¬(y=z)∧z<y)))
*****∀E LESS4 y,z;
23 y≤z≡(y<z∨y=z)
*****TAUT z<y 21:23;
24 z<y (21)
*****∀E LESS1 z;
25 pred z<z
*****∀E LESS3 pred z,z,y;
26 ((pred z<z∧z<y)⊃pred z<y)∧(((pred z≤z∧z<y)⊃pred z<y)∧(((pred z<z∧z≤y)⊃pred z<y)∧((pred z≤z∧z≤y)⊃pred z≤y)))
*****∀E LESS4 pred z,z;
27 pred z≤z≡(pred z<z∨pred z=z)
*****∀E LESS4 pred z,y;
28 pred z≤y≡(pred z<y∨pred z=y)
*****TAUT pred z≤y 24:28;
29 pred z≤y (21)
*****∀E LESS3 z,y,x;
30 ((z<y∧y<x)⊃z<x)∧(((z≤y∧y<x)⊃z<x)∧(((z<y∧y≤x)⊃z<x)∧((z≤y∧y≤x)⊃z≤x)))
*****∀E LESS4 z,y;
31 z≤y≡(z<y∨z=y)
*****∀E LESS4 y,x;
32 y≤x≡(y<x∨y=x)
*****TAUT z≤x 7,24,30:32;
33 z≤x (4 21)
*****∀E LESS3 pred z,y,x;
34 ((pred z<y∧y<x)⊃pred z<x)∧(((pred z≤y∧y<x)⊃pred z<x)∧(((pred z<y∧y≤x)⊃pred z<x)∧((pred z≤y∧y≤x)⊃pred z≤x)))
*****TAUT pred z≤x 7,29,32,34;
35 pred z≤x (4 21)
*****REWRITE tak1(x,y,z)=tak0(x,y,z) BY LOGICTREE∪{ TAK0,TAK1,4,21,29,33,35};
36 tak1(x,y,z)=tak0(x,y,z)≡IF IF pred x≤y THEN y ELSE pred x≤IF pred y≤z THEN z ELSE x THEN IF pred y≤z THEN z E%
LSE x ELSE IF IF pred y≤z THEN z ELSE x≤x THEN x ELSE IF pred x≤y THEN y ELSE pred x=x (4 21)
*****ASSUME pred x≤y;
37 pred x≤y (37)
*****ASSUME pred y≤z;
38 pred y≤z (38)
*****REWRITE ↑↑↑ BY LOGICTREE∪{ 21,33,37:38};
39 tak1(x,y,z)=tak0(x,y,z) (4 21 37 38)
*****ASSUME ¬(pred x≤y);
40 ¬(pred x≤y) (40)
*****REWRITE 36 BY LOGICTREE∪{ 33,38,40};
41 tak1(x,y,z)=tak0(x,y,z)≡IF pred x≤z THEN z ELSE x=x (4 21 38 40)
*****∀E LESS3 pred x,z,y;
42 ((pred x<z∧z<y)⊃pred x<y)∧(((pred x≤z∧z<y)⊃pred x<y)∧(((pred x<z∧z≤y)⊃pred x<y)∧((pred x≤z∧z≤y)⊃pred x≤y)))
*****∀E LESS4 pred x,y;
43 pred x≤y≡(pred x<y∨pred x=y)
*****TAUT ¬(pred x≤z) 24,40,42:43;
44 ¬(pred x≤z) (21 40)
*****REWRITE 41 BY LOGICTREE∪{ 44};
45 tak1(x,y,z)=tak0(x,y,z) (4 21 38 40)
*****⊃I 37⊃39;
46 pred x≤y⊃tak1(x,y,z)=tak0(x,y,z) (4 21 38)
*****⊃I 40⊃↑↑;
47 ¬(pred x≤y)⊃tak1(x,y,z)=tak0(x,y,z) (4 21 38)
*****TAUT tak1(x,y,z)=tak0(x,y,z) 46:47;
48 tak1(x,y,z)=tak0(x,y,z) (4 21 38)
*****ASSUME ¬(pred y≤z);
49 ¬(pred y≤z) (49)
*****∀E LESS1 x;
50 pred x<x
*****REWRITE 36 BY LOGICTREE∪{ 37,49:50};
51 tak1(x,y,z)=tak0(x,y,z)≡IF y≤x THEN x ELSE IF x≤x THEN x ELSE y=x (4 21 37 49)
*****TAUT y≤x 7,32;
52 y≤x (4)
*****REWRITE ↑↑ BY LOGICTREE∪{ 52};
53 tak1(x,y,z)=tak0(x,y,z) (4 21 37 49)
*****REWRITE 36 BY LOGICTREE∪{ 40,49:50};
54 tak1(x,y,z)=tak0(x,y,z)≡IF pred x≤x THEN x ELSE IF x≤x THEN x ELSE pred x=x (4 21 40 49)
*****∀E LESS4 pred x,x;
55 pred x≤x≡(pred x<x∨pred x=x)
*****TAUT pred x≤x 50,55;
56 pred x≤x
*****REWRITE ↑↑↑ BY LOGICTREE∪{ 56};
57 tak1(x,y,z)=tak0(x,y,z) (4 21 40 49)
*****⊃I 37⊃53;
58 pred x≤y⊃tak1(x,y,z)=tak0(x,y,z) (4 21 49)
*****⊃I 40⊃↑↑;
59 ¬(pred x≤y)⊃tak1(x,y,z)=tak0(x,y,z) (4 21 49)
*****TAUT tak1(x,y,z)=tak0(x,y,z) 58:59;
60 tak1(x,y,z)=tak0(x,y,z) (4 21 49)
*****⊃I 49⊃↑;
61 ¬(pred y≤z)⊃tak1(x,y,z)=tak0(x,y,z) (4 21)
*****⊃I 38⊃48;
62 pred y≤z⊃tak1(x,y,z)=tak0(x,y,z) (4 21)
*****TAUT tak1(x,y,z)=tak0(x,y,z) 61:62;
63 tak1(x,y,z)=tak0(x,y,z) (4 21)
*****⊃I 21⊃↑;
64 ¬(y≤z)⊃tak1(x,y,z)=tak0(x,y,z) (4)
*****⊃I 8⊃20;
65 y≤z⊃tak1(x,y,z)=tak0(x,y,z) (4)
*****TAUT tak1(x,y,z)=tak0(x,y,z) 64:65;
66 tak1(x,y,z)=tak0(x,y,z) (4)
*****⊃I 4⊃↑;
67 ¬(x≤y)⊃tak1(x,y,z)=tak0(x,y,z)
*****TAUT tak1(x,y,z)=tak0(x,y,z) 3,67;
68 tak1(x,y,z)=tak0(x,y,z)